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Two-dimensional diffusion in the presence of topological disorder
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How topological defects affect the dynamics of particles hopping between lattice sites of a distorted, two-
dimensional crystal is addressed. Perturbation theory and numerical simulations show that weak, short-ranged
topological disorder leads to a finite reduction of the diffusion coefficient. Renormalization group theory and
numerical simulations suggest that longer-ranged disorder, such as that from randomly placed dislocations or
random disclinations with no net disclinicity, leads to subdiffusion at long times.
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[. INTRODUCTION scription used to analyze the dynamics, is described in Sec.
IIl. Perturbation theory and computer simulation are used to
Diffusion in random media is a well-studied problgi. examine the effect of nonsingular topological disorder on the
The mean-square displacement of a tracer particle behavesd@iffusion coefficient in Sec. IV. The possibility of anomalous
long times in a way that depends on the character of théliffusion in singular topological disorder is examined by
random forces induced on the tracer by the disorder. Forcgg€normalization group theory and computer simulation in
that arise from random potentials lead to a reduction of the>eC- V- A discussion of the results, and their relation to the
transport, with subdiffusion possible for diffusion of an ion Previous literature, is given in Sec. VI. A discussion of the
in a medium with quenched charges obeying bulk Chargé‘:ﬁects o_f to_rsmn_, which exists solely Wlthln the cores of
neutrality [1]. Interestingly, the same subdiffusion results defects, is given in Sec. VII. We conclude in Sec. VIII.
from diffusion of an ion in a medium with randomly placed
qguenched dipolef2-5]. Forces that arise from entrainment Il. THE SURFACE DIFFUSION MODEL

along fluid streamlines lead to an increase in the transport, Wi i cle hooi h ‘ f |
with the well-known result of turbulent super diffusion pos- € consider a particie hopping on the surface of a crystal.

sible for random streamlines with statistics characteristic of’ he particle hops only bgtween nearest—neighbor Iat.tice sites,
fluid turbulence]1]. and the rate of hopping is constant. In particular, since sur-

face diffusion is usually an activated process, the rate to hop
between neighboring sites is assumed to be independent of

topological defects such as dislocations or disclinationd® distance between sites. Disorder in the spatial arrange-

should affect the transport properties of a diffusing tracefMent of the_ surface lattice ;i_tes_indirectly aﬁec'Fs the diffu-
particle. These topological defects cause a global rearrangélo\?vdygam'cs;hr?:u?(t mc;?mcaktlon o;l;fhe_hopplng e_ven]Es.
ment of the connectivity of the lattice upon which the diffu- e derive the Fokker-Planck, or diffusion, equation for
sion occurs. Moreover, there is an elastic response of thif' Surface species by two independent methods. In the first

lattice to such defects, and so there is also local expansion S?et_hOd’ (‘;he ho%pmg_dyna}m;]cs is derived fro_m af ph);]smally
compression of the crystal unit cells. Study of how suchMotlvated consideration of the master equation for the pro-

topological defects affect the transport is, therefore, an interceSs: In the second method, the result is d.erived_in an gffi-
ient fashion by considering a change of variables in the field

esting and challenging problem. Among other results, it®

might be expected that randomly placed dislocations an&je_?;y for thel dynamic_sd dtoh . | id of
random disclinations with no bulk disclinicity will lead to € particle is considered to hop on an irregular grid o

similar dynamics, given the results regarding dynamics He_lttice sites. The probability for particles to be on a given

random potentials and the analogy between linear elasticit ite, P(r), decreases with t?me.due to hopping_of partiqles
theory and electrostatics. ff the site and increases with time due to hopping of neigh-

Previous work has begun to address the question of hoWoring particles onto the sitsee Fig. 1

Distortion of the underlying lattice upon which the diffu-
sion occurs is a very different type of disorder. In particular,

topological disorder affects the transport. Random disclina- DoAt

tions, with no net disclinicity, were predicted to lead to sub-  d[V(r)P(r,t)]=—=—[V(r)P(r)+V(r,)P(ry)
diffusion [6]. A single dislocation, on the other hand, was h

predicted to increase the local diffusivity]. These studies, FV(ry)P(ry) +V(ry)P(ry)
however, were approximaf&]. In particular, rotational sym-

metry was assumed in the dislocation problem, and no ef- —4V(r)P(r,t)], (1)
fects of lattice expansion or contraction were allowed in the

disclination problem. whereh is the lattice spacing\t is the small time increment,

Transport in a two-dimensional crystal with topological andD, is the diffusion coefficient. The volume of each, pos-
defects, then, remains an interesting and unsolved problersibly distorted, unit cell is given by/(r). Equation(l) is
Our model of surface diffusion, and the resulting Fokker-exact and leads in the continuum limit to the general expres-
Planck equation, is introduced in Sec. Il. How the topologi-sion for diffusion in curved spaci®]. Although the crystal
cal defects affect the transport, and the field theoretic demay be distorted, a regular crystal lattice can always be de-
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r doy d doy d
i oy doy oy doy
t ril=vo(r)y=|——————|. 7
[detoo,/an|= o) =|7 5 =5 500 ()
As noted, the Jacobian isg=(detg;;)*?= 1/(detg")*?,
where the inverse of the matri®! is given by
r do, do, g
9i =", ar, (8
M The volume of each unit cell is given By(r)=h?/g(r).
By detailed balance, since the rates to hop forward and back
between any two sites on the crystal are the same, the long-
time average number of particles per site must be equal at all
sites: IianG(a,t)zconst. This implies IirpﬂmP(r,t)
fy «\g(r). Since
i Jd ﬁri (?rJ
FIG. 1. A lattice siter on the distorted crystal and the four &ig'=5 9o Jo
nearest neighbors are shown schematically. Also shown is the dis- : arTa
torted unit cell of the central lattice site. _ory i ar; ar; i ar;
fined locally in terms of lattice coordinates. In the o 904 I 0oy J0, 1y do,

space, the particle hops either up, down, left, or right. The oy o, azrj

correspondence is given byri—o=(h,0), r,—o — _ + 1 (9)
=(-h,0), ry;<=o=(0h), andr < o=(0,—h). The posi- 9oy i 00y §o?
tions of the neighboring sites are defined such that a hop in
the appropriate direction leads to For example, Eq. (4) becomes
or h2 (92r JG i 0-'r] J or .
3 = il — — s iig. 9.
r=r, &Trl ?F +0(h3). 2 p Do| 4i9 d0. o 9o 9;G+Dog" 9;9;G.
" 1y, (10
Note that the coordinates are considered to be a fixed func-Finally, given that
tion of the o coordinatesr =r (o). This mapping is inde- 1 1
pendent of time, as the defects that generate the nontrivial —_giigJg=— =gl glndetg?
; , ; . i g'divg g-dilndetg
mapping will be quenched in the two-dimensional crystal. Jg 2
Inverting Eq.(2) for r, gives ,
o 2 52 1 oory or dIndetg
n=r+h—/| +- —| +0(h. (3 200, do, O
50'1 r 2 (90-1
r 1 dr; dindetg™*
With these expressions for the four neighboring sites,(Ex. 290, do, (11)
to O(h) becomes
2 and
d[V(r)P(r,t)] Dgl| . or; d(VP) N
— == 1dIndetg™* 1 4g"
dt h2 (90-2 &ri _—g:_g..i
@ 2 do, 2% 90,
2
9T 00a ;0T T2 orj do,\ de, do,
where the summation convention has been used. Equation dog dog I 9 or
(4) is exact and lead6n the continuum limix to the general BT TR
expression for diffusion in curved spaf®]. The notation i dfj doy 004 doy
G o 9 - _dog 9y
do, do, dry do, dog
will be used. The shorthand,=d/dr; will also be used. dog d Ir
Equation(4) is a relation for the probability distribution in RFTR (see below
space. The relation for the probability distributiondrspace ! BT
requires a Jacobian: J or;
P(r,t)=G(ot)|detdo, /dr;|. (6) "o da,’ (12
The Jacobian is given by the final expression of the diffusion equation becomes
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G 1 B torsion is an explicit measure of the noncommutativity of
—= —&i(\/ﬁDog”é’jG). (13  differentiation and is, therefore, a measure of the defect den-
at g sity [10]. The diffusion equation does not apply within the

ores of defects, where the metric tensor is undefined, and
he only place where the torsion is nonzero. The effects of
fie torsion should probably be studied with a detailed model

This equation applies everywhere except within the cores o
topological defects, because it has been assumed in the s§

oln(;j tg Iastt_llne 1?; I_Eq(th)h'_[hat the d[[frf]ere?tglatlons fgf‘]jfm‘.“e rather than with the long-wavelength continuum theory of
[10]. i qua ion( )dls no Ing'trr?(t)lfuef anl. eLUSLIJa |Bu?[|on the diffusion equation. For this reason, we exclude this tor-
equation In curved space, wi € familiar Laplace-beltramig;, 1oy, (although see Sec. VIl belowThe long-range,

operator [11] :jgpla;cmg thet _Laplaual? of flat space. The external to defect core, effects of the topological defects are,
mean-square displacement s given by of course, included in Eq13) through the metric tensay"

N ) and\/g. Referencg6,7] included the torsion term explicitly,
(r (t)>_J dr|r[*P(r,t) (14 and a series of approximations allowed the generation of
nonphysical dynamics.
_ 2 Equation(13) can, alternatively, be derived by consider-
f dryg(nIr[2G(r1). (15) ation of the field-theoretic representation of the diffusion op-

) ) ) erator[12,13. In this representation, the Green’s function is
Equation(13) differs from the most general expression for given by an average over a field:

diffusion in curved space by a term related to the tor$&in
We reevaluate the termin detg/dr; : G(r,t)={(a(r,t)), (19

l1dIndetg 1 , ¢ . . .

_—g:_ng_gjk where the average is taken with respect to the weight

2 or 27 dn exp(—9). The particle hopping occurs ior space without
L a4 (ﬁoﬁ agﬁ) regard to the distortion of the crystal, as the rate of hopping

is independent of the distance between lattice sites. The ac-

2 004 00, I tion for such normal diffusion is given by

ﬂrj ary

=< _J1_°F _ _F % _ -9
30 I O} 3Ty 0T s:f dtfdo-|a[(9t+5(t)]a—D0a—2
0 Jdo
e 9 9 d do, “
- g = _
dog Iy dr dog Or; +f dong(o)a(r,0), (20
el o a 9 9 16
Ao, \ Iry dry  dry dr; Te (16 whereny is the initial density profile, and details of the rep-

o . X lica indices used to accommodate averaging over disorder
Defining the torsion as TBi=(dre/do,)(d°dridrc  have been suppressEt#,15. This action is only suggestive

— &%/ orari)o,, note that since theo space is not well defined in the presence of
1gindetg ar; ar; o doy ) topological defects. Thgt the diffusion is pormaldnspz_ace,_

g'J_—:——’——+2g'JTikk however, does make it clear that the limiting distribution
2o J0 o d0 dOg O should be lim _G(o,t)=const. From Eq(6), then, the

_&rj ary d (70'[;

_ ——+Zg”T-k limiting distribution in r space is given by Iirt'erP(r,t)
904 00, dO g IF; . =const< \/g(r)=/g(r)/fdr’Jg(r'). While this result may
o do. 9 Ir ) be surprising, note that the defects which distort the geom-
—— L F 1 ogitk etry mustaffect the limiting distribution, unlike the typical
d0q Iy dop do, case in differential geometry where the observables are de-
a9 or. B scribed by a theory independent of the coordinate system.
=— ~+2g'TK . (170 This explicit result for the limiting distribution agrees with

00a i 90 the prediction from the simple detailed balance argument

Combining Eqs(10), (11), and (17), we find that the exact given above. Note thajdr\/ﬁ(r) is a constant for a given

expression for the diffusion equation is realization of the quenched disorder. The long-time normal-
ization factor for the probability is fixed to be the inverse of
G 1 this integral by the initial conditiofP(r,0)= §(r). Equation

— ij ijTk
E_\/_aai(‘/aDoglaiG)_zDog]Tik‘?iG' (18) (13) for the dynamics conservefdr\g(r)G(r,t); hence,
the probability distributionP(r,t)=\/g(r)G(r,t) remains
Equation(18) is equal to the general expression for diffusion normalized to unity for all time$=0. After change of vari-
in curved spacg¢9]. The difference between the exact an-ables fromeo to r, again making the assumption of being
swer, Eq.(18), and that assuming that the order of differen-outside defect cores so that differentiation commutes, the
tiation commutes, Eq13), is given by the torsion term. The action becomes
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o _ -~ elasticity theory is used, the dislocation field is given by the
S= Jo dtf dr{\ga[ 9+ 8(t)Ja—aa[ VgDog' d;al} dipole limit of two superimposed disclination fields:
B uso°= (b, /s) € 9, uM**"+ const. (26)
+J dr\/ano(r)a(r,O). (21)

The derivatives of the displacement fields are required to
evaluateg" from Eqg. (5). The dislocation fields are prefer-

Finally, integrating out the field [using Eq.(19)], and not-  aple for this calculation, as they lead to well-defined Fourier
ing that for the Green’s functiong(o) = 6(o), the Fokker-  transforms:

Planck equation is

2
G 1 asoc_j| AN 26k Ky (k)
P XX X
7~ g (aDeg’5,6), (22 Zuth oKk
| ptn k(—K2+K2) wo k.
with G(r,0)=48(r)/\g(r). The field-theoretic result, Eq. +1 20\ kz s +2,U~+)\ k_: by(k),
(22), is the same as that derived by more physically-
motivated means, Eq13). )
. w+N 2kKS k|-
3,075 =i| S —— 2+ b, (k)
lIl. THE MODEL OF TOPOLOGICAL DISORDER 2uth K k

The topological defects modify the diffusive motion of | wtn ky(—k§+ ki) pooky.
the particle by affecting thg" in the Fokker-Planck equa- o 7 t o 2 by(k),
tion. Onceg" is determined, Eqg13) and(15) provide the K k K k
means to calculate the transport properties. It is conventional
in continuum elasticity theory to relate the spatial coordi- _disioc_<| MTA Ku( —KZ+K9) o Ky Bk
nates to the lattice coordinates by xy = 2pu+\ K4 C2ptN K2 (k)

r(o)=o+u(r), (23 2 '
pif - AR B Kyl s s

where the displacement field is written in terms of the 2uth K k
variables that remain well defined even in the presence of 2 12
topological defects. Ther space, on the other hand, does not =i pth ky(—Ktky) M & b (k)
remain well defined, since the effect of disclinations is to add 2u+X\ k4 2utN K2
or remove wedges of lattice sites from space, and the
effect of dislocations is to add or remove half lines of lattice ) RN 2kxk§ Ky | A
sites fromo space. For a dislocation at the origin with Bur- = 2utN KA * E by (k). (27)

gers vectomb, the displacement fields are givgh6] by

Note that thex andy derivatives of the strain fields are not

disloc (MTN) eqbriryg Ty simply related by the ratié, /k, due to the presence of the
2au= - (2m+N) r2 +Dbitan E defects. The linearity of elasticity theory has been used to
accommodate a density field of defects with Burgers vectors

o r given byb(r).
_ZM—H\fliblmﬁ! (24) The dislocations are assumed to be distributed randomly
in the material with correlation function
where . and\ are the two-dimensional Lamepefficients, N - -
€11= €,,=0, ande;,= — €,;= 1. Similarly, for a disclination (bi(ky)bj(kp))= 8j(2m)?8(ky + ko) x (k1 +kp), (28)
of strengths at the origin, the displacement fields are given
by where
o an r X(K)=yk"exp — BK?). (29
2udsiin= — =" g —sertan 1 . . . .
2(2pu+N) M Physically, we expect that this model of dislocations should
generate identical dynamics to one in which disclinations are
+ ﬁsriln(rlh). (250  randomly distributed with correlation function
o

S(k1)S(kp)) = (27)28(k1+ ko) [Kq + Kol 2x (K + k).
Equation(25) differs from the simplified distortion field used (Sthostie))=(2m7otk +ka)lka kel “x(ka k) (30)

in Ref.[6] by the inclusion of the strain field representing the
local lattice contraction and expansion. These are the termBhis physical expectation is a mathematical consequence of
in Eq.(25) that depend on the Lanmefficients. Since linear Eq. (26).
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With these results in hand, we are now in a position to
calculate the action for the field theoretic description of the

Green’s function. The terms in Eq21) are expressed to

linear and quadratic order if’*!°°, and then an average over
the random distribution of dislocations is taken. In fact, since

Eq. (14) is preferable to Eq(15), the theory is written in

terms of the fieldsac (wherec=ga), and P=(c). The
action is

S= detf dra[d,— (Do+ 8D,)V2+ 8(t)]c
0

+J drs(r)a(r,00+S,, (3D

where

S|=—2D2f dtldtzf (27)28(ky+ky+katKy)
k1koksky

_r

Xa(ke t)C(ka t)a(Ks ) (K )| 5

ki

ut+N Kp-ko(ki+k3)+ 2kaks

+ e
2utA ky+kal?

AR DN ks

wt N kg ka(k3+K3) + 2k3k2
2p+ A |ks+kal?

x(K1+Kz)
[ky+kal? ,

(32

where the notatiorf, stands forfd®k/(2)?. The term re-
sulting from a nonzero average ai¥°9? is

PHYSICAL REVIEW E 68, 021107 (2003

2912+ 20u\ + 5\ 2
9(2u+\)?

yDo T(n/2)

oD = 2T 2Bn/2

(39

To demonstrate the behavior of this model, we perform
numerical simulations. The dislocation density fields are con-
structed with correlation functiofEq. (28)] for n=2 using
the method of Ref[18]. Equation(27) and an inverse fast
Fourier transform are used to calculate the displacement
fields in real space. The matriy! is calculated as the in-
verse of the matrixg;; given by Eq.(8), and the relationr
=r—u(r) is used.

The Fokker-Planck equation, E(L3), can be considered
to result from many small hops, the net effect of which is
Gaussian, diffusive motion. So that a hopping process on a
lattice reproduces this differential equation, the average and
mean-square displacements must be correct at each lattice
site. Interestingly, this differential equation can be evaluated
by Monte Carlo methods on a perfect, square lattice, even
though the differential equation itself describes the motion of
a particle in a distorted geometry. To first order in the time
step, the mean displacement is given by

(ri(At)>=J dryg r;G(r,At)

=fmdtf dryg riatG(r,t)+fdr\/§ rG(r,0)
0

_ DAt
Vo

where Eq.(13) and integration by parts twice has been used

d9;(\Nag), (36)

5D yDo| 13\2+ 16u\ + 25u2 dekk”‘l 2) in the last step. Similarly, to first order, the mean-square
= eX —_— - . .
"= on 9(2u+\)2 0 =B displacement is given by
_ ¥Do I'(n/2) | 131+ 160 + 254 33 <ri(At)r,-(At)>=f dryg rir;G(r,At)
2w B2 9(2u+\)2
At
Exactly the same theory is generated if the correlation func- = fo dtf dryg rirjG(r,t)

tion [Eq. (30)] is used with the disclination displacements

given by Eq.(25).

IV. TOPOLOGICAL DISORDER REDUCES
THE DIFFUSION CONSTANT

+Jdr\/§ rir;G(r,0)

=2D,Atg", (37)

For the model witm>0, the topological disorder reduces where Eq.(13) and integration by parts twice has again been
the diffusion coefficient by a finite amount. The finite con- used in the last step.

tribution of 6D, is explicit in Eqg.(33). Moreover, standard
power counting argumen{d 7] show that nonperturbative,
renormalization effects can be expected from E3%) only
for n=<0. From perturbation theory on E2) for n>0, the
contribution to the diffusion coefficient is found to be

¥Do T(n/2)
21T 2,8”’2

Au’+2(pu+ )2
(2p+N)?

oD, = (34)

The total contribution to the diffusion coefficient is, there-

fore,

Eight hopping rates are defined, consistent with the speci-
fications of Eqs(36) and(37). So that the nondiagonal terms
of g are properly reproduced, both nearest- and next-
nearest-neighbor hops are required. The rate for each hop-
ping event is

Do
Ti(r—r+Ar)=—

g(r+Ar)|¥41
h2

W E[f(r)+f(r+Ar)].
(39

The functionf is given by
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different. In comparison to the analogous term for diffusion
in the random potentiale.g., termS; of Ref. [15] with
Xou(K)=Xx(K)/K?], the term proportional t. is new, as are
the factors—kZ+ 2[k2k3— (ky-kp)?]/|k;+k,|? in the term
proportional tou+\. Indeed, as we will see, the present
interaction term is more difficult to analyze than is the analo-
gous one from diffusion in a random potential. Formally, the
case ofn=<0 leads to large distortions of the lattice for arbi-
trarily small y, which implies that the assumption of linear
s elasticity used to calculate the strain fields breaks down. We
3.02 . ! . ! . can, however, treat the dynamical behavior implied by Eqgs.
0.0 0.5 1.0 1.5 (31 and (32) as an interesting mathematical question. A
Y technical detall is that we supplement the correlation func-
tion given by Eq.(29) with the conditiony(0)=0, so that
the displacement fields of Eq27) are well defined fork
=0. This suppresses macroscopic size fluctuations of the

FIG. 2. Shown are simulation results for the reduction in the
diffusion coefficient for the case=2, u=\, andg=4. The error
bars are roughly=0.01. The best linear fit to the simulation data is

shown (solid ling). The simulation data are compared to perturba—sample' . L
tion theory(dashed ling Eq. (35), 5D/Dy=— ¥/(67 ). ~ Before applying renormalization group theory, the terms
in the field theory must be known. The quartic interaction
f=gll—e for Ar=(=h,0), term, Eq.(32), is known. The contribution to the propagator,

Eq. (33), while explicit, leads to a formal divergence of the
short-time diffusion coefficient. Numerical simulations show

f=g%—e€ for Ar=(0,+h), iffusivi i [
g™ —e for Ar=( ) that the local diffusivity tensoDyg'! can be large but is

f=(g*2+e€)/2 for Ar=(=h,=h) never vanishingly small. The locations of large local diffu-
T sivity, moreover, are isolated. The apparent divergence of
f=(—g'%+e)/2 for Ar=(=h,Th) (39) 6D, is, thus, simply the result of particles rapidly hopping

away from a few isolated locations. These physical consid-

with e=|g*¥. The transition rates in Eq38) explicitly sat- ~ €rations suggest that the divergencesb, is washed out by
isfy detailed balance for the equilibrium distribution SPatial averaging and is not important for the long-time dy-

lim. P(r,t)=consi Jg(r). These rates give the correct "@mics. We can, therefore, assume a finite local diffusivity.
toeon B Numerical simulations of the dynamics, to be described be-

average and mean-square displacemenB(io), Eqs.(36)  |ow, bear out this assumption of a finite short-time diffusiv-
and (37), when At=1/(2;T;). These results imply that the ity |ndeed, a finite short-time diffusivity is assured for finite
Monte Carlo procedure evaluates differential &), and so lattice sizes by the elimination of thg(0) mode. The

Eq. (14) can be used to calculate the mean-square dISplac‘f‘:fnomalous dynamics, then, is observed on finite lattices for

”.‘e”ts-.The progedure of Refil8] is used to perform _the . time scales that are less than the characteristic time it takes to
simulation of this random process, where the particle IS avel across the lattice

moved to one of the neighboring eight sites with probability
AtT,;, and time is incremented kjt= — At In(x), wherex is
a uniform random number,<Ox<1.

The results of the numerical simulations are shown in Fig
2. The calculations were performed for the case\, n

We apply renormalization group theory to actiof&l)
and (32) to take into account the effects of nonzeyo To
one-loop order, self-energy and vertex diagrams are summa-
rized in Figs. 3 and 4. The flow equations are integrated to a
time small enough so that perturbation theory applies. In this

=2,h=1, andB=4. The simulations were done on 4096 __ . ; : ;
’ - regime, matching theory is used to determine the constants
<4096 lattices for a total of 500000 steps and averaged OVl integration for the flow equations. Momenta in the range

100 000 particles. The strength of the disorder was varied "A/b<k<A are integrated over, and the fields are rescaled
the range 6<y<<1.25. For larger values of, the transition '

rates specified by Eq€38) and (39) became negative at by a’'(bk,b™*t)=a(k,t)/a and c’(bk,b™“t)=c(kt)/e.
some of the lattice sites. Also shown is a fit to the functionalThe relationsa=1,a=b? are used to achieve a fixed point
form 6D/Dy=1—ax. The fit to the simulation data ci ~ and to keep the time derivative B constant. The flow pa-
=0.01285-0.0051 is in excellent agreement with the theo-rameter is defined by=Inb. We determine the dynamical

retical result ofa=0.013 26 from Eq(35). exponentz by requiring that the diffusion coefficient remains
unchanged. Defining y2=yu?/(2u+\)%,  v3=yu(u
V. POSSIBLE ANOMALOUS DIFFUSION +N)/[2(2w+N)?], and y3= y(u+N\)4[4(2u+N)?], the

o ) ] contributions to the parameters from the one-loop diagrams
The casen=0 is interesting, as perturbation theory for the uf Fig. 4 are

diffusion coefficient formally diverges. While this theory has
the same upper critical dimensial=2, as the problem of
diffusion of an ion in the electrostatic field of random,
guenched chargd4], the interaction term Eq32), is quite dl
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TWO-DIMENSIONAL DIFFUSION IN THE PRESENE . . . PHYSICAL REVIEW E 68, 021107 (2003

< = 2
2=2+ —(¥+27)). (42)
a Using Eq.(41) in Eq. (40), the flow equations become
diny? 0
dl
dinys 2
-2 “ 2
dl 77()/1+ ’)/3) ’
b diny; 4
e + 2'
FIG. 3. (@) Diagram representing the propagator. The arrow dl 77()’1 73) (42)

points in the direction of increasing time, and double lines represent

the bar fields(b) Disorder vertexy. As expected, the flow equations show that there are only two
independent parameterg, andy;, resulting from renormal-
ization of the two Lamecoefficients. In other words, the

diny? 4, > o
=2(z-2)— —(y{+293), relation y5(1)=v.(l) y3(l) is maintained under the renor-
di m malization.
Unexpectedly, however, the flow equations show that
v,(1) and y5(l) are growing. Indeed, these one-loop flow
din yg equations predict thags(l) flows to infinity at a finite time

2
—ar 22727 L3 2n), corresponding  to 1=[ /(2992 HIn[(+ 595~ R
+yg)}. The divergence of this parameter implies that higher
order terms must be kept in the flow equation to derive a
din 2 4 controlled result. It may also be the case that terms higher
2= 2(2-2)— —(Y2—2y173). (40)  order inu®s°° must be kept in the expansion of actic21).

dl ™ If the renormalization of the parameters is assumed to be
controlled by higher-loop corrections and is assumed to be
SsmaII, the dynamical exponent can be used to determine the
scaling exponent for the mean-square displacement at long
times:

From the requirement that the diffusion coefficient remain
fixed, the dynamical exponent is

(r?(t))~constxt1 2. (43

The renormalized time flows as

t(l*)ztex;{—f' z(I)dI}zto, (44)
b 0
a
where the flow equations are stopped lat so thatt,
~h?/(4D,). The renormalized mean-square displacement
flows as
(r2(t)=e(r[t(),1]). (45
Finally, at the matching
(r2[t(1*),1*1y=4Dt(I*), (46)
C d

since the time is short enough so that the disorder does not
FIG. 4. One-loop diagramsa) Self-energy diagrams contribut-  Significantly affect the motion of the particle. In other words,

ing to D. (b)—(d) Vertex diagrams contributing tg; (c) and (d) it is assumed that at short times the diffusion coefficient re-

cancel. mains finite, despite the formal appearancesdf, in Eq.
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0.6 done on 409& 4096 lattices for a total of 1000000 steps
and averaged over 100000 particles. Also shown is a fit to
© the functional form of Eq(43). The simulation results are
approximately fit by ¢—2)/y=1.02+0.28. If it is assumed
that none of the parameters flow, the scaling exponent is
given by (z—2)/y=2/(37)~0.2122. By comparison, the
simulation results suggest that there is substantial positive
renormalization of the parameters, as is suggested by Eq.
(42).

VI. DISCUSSION

A Fokker-Planck equation for diffusion on the surface of a
crystal with topological defects, Eq13), has been derived
by two independent methods. As expected, the usual diffu-

FIG. 5. Shown are simulation results for the scaling exponension equation in curved space is derived. An additional as-
for the casen=0, u=\, and B=4. The error bars are given sumption of\/g=1 of previous, approximate treatmefi
roughly by the scatter in the data. The best linear fit to the simulahas also been removed in the present calculation through the
tion data is shown(solid line). Also shown(dashed lingis the | 5e of the exact strain field given by H@&5). The theory of
prediction assuming that the other parameters do not "2 random dislocations is shown to be equivalent to a theory of
+2y/(3m). random disclinations, where a simple factorkdfrelates the

correlation functions of the two models of disorder,
(33). Putting these matching results together with the dY-and (30). HaGs)

namical expon_ent, the mean-square displacement is found to The field theory for disorder, Eq&31) and(32), is explic-
scale at long times as itly shown to be distinct from that for diffusion of an ion in
a random electrostatic potential field. One consequence of
(rz(t)>~consp<t1/[1+(7f+27§)/771, (47)  this difference is that the renormalization group flow equa-
tions are more involved to analyze, with one-loop results
To test whether anomalous scaling occurs in the full nonunable to render a controlled prediction.
linear model, we perform numerical simulations. The transi- Topological disorder slows down a diffusing particle, as
tion rates from Eq9.38) and(39) cannot be used, as they are shown by Eq(35). This reduced transport should be observ-
negative even for small values ¢f We, therefore, develop a able on the surfaces of crystals with quenched disclination or
strategy based upon the idea that diffusion locally follows adislocation defects. While the effect is subtle, it would be an
Gaussian probability distribution with mean and varianceinteresting one to observe experimentally. The present com-
specified by Eqs(36) and (37). The time incremeni\t is puter simulation results suggest that such observations
chosen so that malgr;)|,|(or;drj)|) is on the order of unity. should be feasible.
This is done by choosing At to be the maximum of the For singular disorden<0 in two dimensions, the model
absolute values of the two average displacements if3y. of topological disorder leads to subdiffusive motion of the
and the two eigenvalues of the mati,g'. Defining the particle. Of course, for such singular disorder, the assump-
matrix w=(2DoAtg")*?, the random displacements of the tion of linear elasticity breaks down. Moreover, the energy of
diffusing particle are given by the relations a distribution of topological defects with net dipole moment
becomes superextensive due to large strain fields at the edges
A of the two-dimensional crystfl0]. Nonetheless, the sugges-
Ax= M&-(\/aglj)-l-WllZl-FleZz. tion that subdiffusion is the mathematical result of motion in
\/5 ) the, possibly approximate, random displacement fields of lin-
ear elasticity theory is interesting. Renormalization group ar-
guments are suggestive of such subdiffusion, although one-
Ay= DoAt ﬁj(\/ggzj)+W21zl+W2222! (48) loop results are unable to capture the exponents

Jg guantitatively.
Numerical simulations accurate to all orders in the dis-

wherez; andz, are independent, Gaussian random variableplacement fields suggest that the motion is, indeed, subdiffu-
with zero mean and unit variance. This approach reproducesive. These numerical simulations suggest that there is sig-
the Fokker-Planck equatiod) in the limit of a small lattice  nificant renormalization of the disorder strength parameter,
spacing and time increment. For a finite lattice spacing, thén contrast to the case of diffusion in random potential fields
diffusion coefficient, and possibly the scaling exponént [1]. Interestingly, the renormalization afappears less sig-
contain discretization errors. nificant for smaller values ofy, although this may be be-
The results of numerical simulations with this scheme arecause the crossover time for renormalization is large for
shown in Fig. 5. The calculations were performed for thesmall y and longer than the observed simulation time. These
caseu=A\, n=0, h=1, andB=4. The simulations were simulations suggest a power law behavior of the mean-
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square displacement, although localization at exceptionally

long times cannot be ruled out, in principle.

VII. WHAT IF TORSION IS INCLUDED?

We comment here on the impact of the torsion term

within the continuum theory of the diffusion equation. The
torsion term is evaluated as

ary
do,

Expanding Eq(18) to linear order inu®s'°, we find that the
interaction term, previously Eq32), becomes

92 92

&rj b
aridry  dryar; Ta™ "€ @’

2TikkETi = ( dor,
(49

D2
S|:_f dtldtzf (2’77)25(k1+k2+k3+k4)
2 Kykpkaks

Xg(kl t)c(ks atl)JaL(ks 12)C(Kyg )

(2”|

X (ky+Ka)+ 7Ky

5
Ky+ky|?

kq-ko(K2+K3) + 2k3ks
|ky+kol*

2
3

yl|k3+ Kal?

X

Y3

g

Ks-ka(k3+Kk3)+ 2k3k3
L

_—

(k3+ka)+ 7Ky

V3

X x(ky+Ks). (50)

Exactly the same theory is generated if the correlation func

tion [Eq. (30)] is used with the disclination displacements
given by Eq.(25). The inclusion of the torsion term has
generated the additional terms proportional \fok, and
Jyk,. Applying perturbation theory t&,, we find that a
mass term is generatedm= —2D,y;\/y. This term is ex-

actly canceled by a mass term arising from the average o

terms proportional toy®*'°92, which must be the case since
the master equatiofil) conserves probability. No contribu-
tion to the diffusivity is generated by the average of term
proportional to (19'°92. From the average @&, we find an
additional negative contribution to the diffusivity:

yDo I'(n/2)
2 2,6'”/2

2(p+N)
(2u+N)

6D||| = . (51)

Within the approximation of the continuum diffusion equa-
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0.3

FIG. 6. Shown are simulation results for the scaling exponent
for the casen=0, w=N\, andB=4 when torsion is included. The
error bars are given roughly by the scatter in the data. The best
linear fit to the simulation data is showsolid line). Also shown
(dashed lingis the prediction assuming that the other parameters do
not flow, z=2+4+/(3mx).

For the mathematically interesting casens£0, we fol-
low our previous numerical strategy. The random displace-
ments of the diffusing particle are altered from E4g) to

DoAt : : )
Ax= OTgaj( Jagh) +DoAtg! T, +whz,
DoAt . . .
Ay=—2 d;(Ngg¥) +DoAtg2Tj+wiz. (52

Vg

To make use of this formula, we need an expression for
arildo, that occurs inT; . This is found asir;/do,=A;,"
whereA ;= do,/dr;=8,—du,ldr;. In evaluatingT;, we

use the first line of Eq49). The results of numerical simu-
lations with this scheme are shown in Fig. 6. The calcula-
tjons were performed for the cage=\, n=0, h=1, and

=4. The simulations were done on 4098096 lattices for

a total of 1000000 steps and averaged over 100000 par-
ticles. Also shown is a fit to the functional form of E@.3).

SThe simulation results are approximately fit by—2)/y

=0.49+0.04.

There appears to be relatively little, if any, renormaliza-
tion of zaway from the bare value. A power law behavior of
the long-time mean-square displacement in the presence of
torsion is observed, although localization at exceptionally
long times still cannot be ruled out.

It is clear that within the continuum assumption of the
diffusion equation, the torsion term affects the dynamics.

tion, then, the torsion term generates an additional contribu¥he contribution to the diffusion coefficient is explicit in Eq.

tion to the effective diffusivity whem>0. Note that this

(51) for the casen>0. Forn=0, the results shown in Fig. 6

contribution is a result of correlated drift terms that existdiffer from those without torsion in Fig. 5. Note that the
solely within the cores of the defects. There is no reason toesults with torsion, as those without torsion, differ substan-

expect that this contribution is universal or even well de-

scribed by continuum theory.

tially from the approximate results of Ref&,7], noticeably
through their dependence on the two Laowefficients.
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VIIl. CONCLUSION transport. Interestingly, randomly placed dislocations, or ran-
domly placed disclinations with no net disclinicity, lead to

. We have given a treatment of thg ?ﬁeCt of t(.)pOIOg'Calanomanus subdiffusive behavior when the displacement
disorder on transport properties. Within the lattice recon-

struction predicted by linear elasticity theory, topological dis—fIGIdS of linear elasticity are used.
order is manifestly different from charged, potential-type dis-
order. The net effect of the defects, through local lattice
expansion and contraction and global topological rearrange- This research was financially supported by the Alfred P.
ment of lattice connectivity, is an overall reduction of the Sloan Foundation.
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