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Two-dimensional diffusion in the presence of topological disorder
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How topological defects affect the dynamics of particles hopping between lattice sites of a distorted, two-
dimensional crystal is addressed. Perturbation theory and numerical simulations show that weak, short-ranged
topological disorder leads to a finite reduction of the diffusion coefficient. Renormalization group theory and
numerical simulations suggest that longer-ranged disorder, such as that from randomly placed dislocations or
random disclinations with no net disclinicity, leads to subdiffusion at long times.
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I. INTRODUCTION

Diffusion in random media is a well-studied problem@1#.
The mean-square displacement of a tracer particle behav
long times in a way that depends on the character of
random forces induced on the tracer by the disorder. Fo
that arise from random potentials lead to a reduction of
transport, with subdiffusion possible for diffusion of an io
in a medium with quenched charges obeying bulk cha
neutrality @1#. Interestingly, the same subdiffusion resu
from diffusion of an ion in a medium with randomly place
quenched dipoles@2–5#. Forces that arise from entrainme
along fluid streamlines lead to an increase in the transp
with the well-known result of turbulent super diffusion po
sible for random streamlines with statistics characteristic
fluid turbulence@1#.

Distortion of the underlying lattice upon which the diffu
sion occurs is a very different type of disorder. In particul
topological defects such as dislocations or disclinatio
should affect the transport properties of a diffusing tra
particle. These topological defects cause a global rearra
ment of the connectivity of the lattice upon which the diff
sion occurs. Moreover, there is an elastic response of
lattice to such defects, and so there is also local expansio
compression of the crystal unit cells. Study of how su
topological defects affect the transport is, therefore, an in
esting and challenging problem. Among other results
might be expected that randomly placed dislocations
random disclinations with no bulk disclinicity will lead t
similar dynamics, given the results regarding dynamics
random potentials and the analogy between linear elast
theory and electrostatics.

Previous work has begun to address the question of
topological disorder affects the transport. Random discli
tions, with no net disclinicity, were predicted to lead to su
diffusion @6#. A single dislocation, on the other hand, w
predicted to increase the local diffusivity@7#. These studies
however, were approximate@8#. In particular, rotational sym-
metry was assumed in the dislocation problem, and no
fects of lattice expansion or contraction were allowed in
disclination problem.

Transport in a two-dimensional crystal with topologic
defects, then, remains an interesting and unsolved prob
Our model of surface diffusion, and the resulting Fokk
Planck equation, is introduced in Sec. II. How the topolo
cal defects affect the transport, and the field theoretic
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scription used to analyze the dynamics, is described in S
III. Perturbation theory and computer simulation are used
examine the effect of nonsingular topological disorder on
diffusion coefficient in Sec. IV. The possibility of anomalou
diffusion in singular topological disorder is examined b
renormalization group theory and computer simulation
Sec. V. A discussion of the results, and their relation to
previous literature, is given in Sec. VI. A discussion of t
effects of torsion, which exists solely within the cores
defects, is given in Sec. VII. We conclude in Sec. VIII.

II. THE SURFACE DIFFUSION MODEL

We consider a particle hopping on the surface of a crys
The particle hops only between nearest-neighbor lattice s
and the rate of hopping is constant. In particular, since s
face diffusion is usually an activated process, the rate to
between neighboring sites is assumed to be independe
the distance between sites. Disorder in the spatial arran
ment of the surface lattice sites indirectly affects the dif
sion dynamics through modification of the hopping event

We derive the Fokker-Planck, or diffusion, equation f
the surface species by two independent methods. In the
method, the hopping dynamics is derived from a physica
motivated consideration of the master equation for the p
cess. In the second method, the result is derived in an
cient fashion by considering a change of variables in the fi
theory for the dynamics.

The particle is considered to hop on an irregular grid
lattice sites. The probability for particles to be on a giv
site, P(r ), decreases with time due to hopping of particl
off the site and increases with time due to hopping of nei
boring particles onto the site~see Fig. 1!:

d@V~r !P~r ,t !#5
D0Dt

h2
@V~r I!P~r I!1V~r II !P~r II !

1V~r III !P~r III !1V~r IV !P~r IV !

24V~r !P~r ,t !#, ~1!

whereh is the lattice spacing,Dt is the small time increment
andD0 is the diffusion coefficient. The volume of each, po
sibly distorted, unit cell is given byV(r ). Equation~1! is
exact and leads in the continuum limit to the general expr
sion for diffusion in curved space@9#. Although the crystal
may be distorted, a regular crystal lattice can always be
©2003 The American Physical Society07-1
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fined locally in terms of lattice coordinatess. In the s
space, the particle hops either up, down, left, or right. T
correspondence is given byr I↔s5(h,0), r II↔s
5(2h,0), r III↔s5(0,h), andr IV↔s5(0,2h). The posi-
tions of the neighboring sites are defined such that a ho
the appropriate direction leads tor . For example,

r5r I2h
]r

]s1
U

r I

1
h2

2

]2r

]s1
2U

r I

1O~h3!. ~2!

Note that ther coordinates are considered to be a fixed fu
tion of the s coordinates:r5r (s). This mapping is inde-
pendent of time, as the defects that generate the nontr
mapping will be quenched in the two-dimensional cryst
Inverting Eq.~2! for r I gives

r I5r1h
]r

]s1
U

r

1
h2

2

]2r

]s1
2U

r

1O~h3!. ~3!

With these expressions for the four neighboring sites, Eq.~1!
to O(h) becomes

d@V~r !P~r ,t !#

dt
5

D0

h2 Fh2
]2r i

]sa
2

]~VP!

]r i

1h2
]r i

]sa

]r j

]sa

]2~VP!

]r i]r j
G , ~4!

where the summation convention has been used. Equa
~4! is exact and leads~in the continuum limit! to the general
expression for diffusion in curved space@9#. The notation

gi j 5
]r i

]sa

]r j

]sa
~5!

will be used. The shorthand] i5]/]r i will also be used.
Equation~4! is a relation for the probability distribution inr
space. The relation for the probability distribution ins space
requires a Jacobian:

P~r ,t !5G~s,t !udet]sa /]r i u. ~6!

The Jacobian is given by

FIG. 1. A lattice siter on the distorted crystal and the fou
nearest neighbors are shown schematically. Also shown is the
torted unit cell of the central lattice site.
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udet]sa /]r i u5Ag~r !5U]sx

]r x

]sy

]r y
2

]sx

]r y

]sy

]r x
U. ~7!

As noted, the Jacobian isAg5(detgi j )
1/251/(detgi j )1/2,

where the inverse of the matrixgi j is given by

gi j 5
]sa

]r i

]sa

]r j
. ~8!

The volume of each unit cell is given byV(r )5h2/Ag(r ).
By detailed balance, since the rates to hop forward and b
between any two sites on the crystal are the same, the lo
time average number of particles per site must be equal a
sites: lim

t→`
G(s,t)5const. This implies lim

t→`
P(r ,t)

}Ag(r ). Since

] ig
i j 5

]

]r i
S ]r i

]sa

]r j

]sa
D

5
]r j

]sa

]

]r i

]r i

]sa
1

]r i

]sa

]

]r i

]r j

]sa

5
]r j

]sa

]

]r i

]r i

]sa
1

]2r j

]sa
2

, ~9!

Eq. ~4! becomes

]G

]t
5D0S ] ig

i j 2
]r j

]sa

]

]r i

]r i

]sa
D ] jG1D0gi j ] i] jG.

~10!

Finally, given that

1

Ag
gi j ] iAg52

1

2
gi j ] i ln detg21

52
1

2

]r j

]sa

]r i

]sa

] ln detg21

]r i

52
1

2

]r j

]sa

] ln detg21

]sa
, ~11!

and

1

2

] ln detg21

]sa
5

1

2
gji

]gi j

]sa

5
1

2

]sb

]r i

]sb

]r j

]

]sa
S ]r i

]sg

]r j

]sg
D

5
]sb

]r i

]sb

]r j

]r j

]sg

]

]sa

]r i

]sg

5
]sb

]r i

]

]sa

]r i

]sb

5
]sb

]r i

]

]sb

]r i

]sa
~see below!

5
]

]r i

]r i

]sa
, ~12!

the final expression of the diffusion equation becomes

is-
7-2
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]G

]t
5

1

Ag
] i~AgD0gi j ] jG!. ~13!

This equation applies everywhere except within the core
topological defects, because it has been assumed in the
ond to last line of Eq.~12! that the differentiations commut
@10#. Equation~13! is nothing more than the usual diffusio
equation in curved space, with the familiar Laplace-Beltra
operator @11# replacing the Laplacian of flat space. Th
mean-square displacement is given by

^r 2~ t !&5E dr ur u2P~r ,t ! ~14!

5E drAg~r !ur u2G~r ,t !. ~15!

Equation~13! differs from the most general expression f
diffusion in curved space by a term related to the torsion@9#.
We reevaluate the term] ln detg/]r i :

1

2

] ln detg

]r i
5

1

2
gk j

]

]r i
gjk

5
1

2

]r k

]sa

]r j

]sa

]

]r i
S ]sb

]r j

]sb

]r k
D

5
]r k

]sa

]r j

]sa

]sb

]r j

]

]r i

]sb

]r k

5
]r k

]sa

]

]r i

]

]r k
sa5

]

]sa

]sa

]r i

1
]r k

]sa
S ]

]r i

]

]r k
2

]

]r k

]

]r i
Dsa. ~16!

Defining the torsion as 2Tik
k 5(]r k /]sa)(]2/]r i]r k

2]2/]r k]r i)sa , note that

gi j
1

2

] ln detg

]r i
5

]r i

]sa

]r j

]sa

]

]sb

]sb

]r i
12gi j Tik

k

5
]r j

]sa

]r i

]sa

]

]sb

]sb

]r i
12gi j Tik

k

52
]r j

]sa

]sb

]r i

]

]sb

]r i

]sa
12gi j Tik

k

52
]r j

]sa

]

]r i

]r i

]sa
12gi j Tik

k . ~17!

Combining Eqs.~10!, ~11!, and ~17!, we find that the exac
expression for the diffusion equation is

]G

]t
5

1

Ag
] i~AgD0gi j ] jG!22D0gi j Tik

k ] jG. ~18!

Equation~18! is equal to the general expression for diffusi
in curved space@9#. The difference between the exact a
swer, Eq.~18!, and that assuming that the order of differe
tiation commutes, Eq.~13!, is given by the torsion term. Th
02110
of
ec-

i

-

torsion is an explicit measure of the noncommutativity
differentiation and is, therefore, a measure of the defect d
sity @10#. The diffusion equation does not apply within th
cores of defects, where the metric tensor is undefined,
the only place where the torsion is nonzero. The effects
the torsion should probably be studied with a detailed mo
rather than with the long-wavelength continuum theory
the diffusion equation. For this reason, we exclude this t
sion term ~although see Sec. VII below!. The long-range,
external to defect core, effects of the topological defects
of course, included in Eq.~13! through the metric tensorgi j

andAg. Reference@6,7# included the torsion term explicitly
and a series of approximations allowed the generation
nonphysical dynamics.

Equation~13! can, alternatively, be derived by conside
ation of the field-theoretic representation of the diffusion o
erator@12,13#. In this representation, the Green’s function
given by an average over a field:

G~r ,t !5^a~r ,t !&, ~19!

where the average is taken with respect to the wei
exp(2S). The particle hopping occurs ins space without
regard to the distortion of the crystal, as the rate of hopp
is independent of the distance between lattice sites. The
tion for such normal diffusion is given by

S5E
0

`

dtE dsH ā@] t1d~ t !#a2D0ā
]2a

]sa
2J

1E dsn0~s!ā~r ,0!, ~20!

wheren0 is the initial density profile, and details of the rep
lica indices used to accommodate averaging over diso
have been suppressed@14,15#. This action is only suggestive
since thes space is not well defined in the presence
topological defects. That the diffusion is normal ins space,
however, does make it clear that the limiting distributio
should be lim

t→`
G(s,t)5const. From Eq.~6!, then, the

limiting distribution in r space is given by lim
t→`

P(r ,t)

5const3Ag(r )5Ag(r )/*dr 8Ag(r 8). While this result may
be surprising, note that the defects which distort the geo
etry mustaffect the limiting distribution, unlike the typica
case in differential geometry where the observables are
scribed by a theory independent of the coordinate syst
This explicit result for the limiting distribution agrees wit
the prediction from the simple detailed balance argum
given above. Note that*drAg(r ) is a constant for a given
realization of the quenched disorder. The long-time norm
ization factor for the probability is fixed to be the inverse
this integral by the initial conditionP(r ,0)5d(r ). Equation
~13! for the dynamics conserves*drAg(r )G(r ,t); hence,
the probability distributionP(r ,t)5Ag(r )G(r ,t) remains
normalized to unity for all timest>0. After change of vari-
ables froms to r , again making the assumption of bein
outside defect cores so that differentiation commutes,
action becomes
7-3
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S5E
0

`

dtE dr$Agā@] t1d~ t !#a2ā] i@AgD0gi j ] ja#%

1E drAgn0~r !ā~r ,0!. ~21!

Finally, integrating out theā field @using Eq.~19!#, and not-
ing that for the Green’s functionn0(s)5d(s), the Fokker-
Planck equation is

]G

]t
5

1

Ag
] i~AgD0gi j ] jG!, ~22!

with G(r ,0)5d(r )/Ag(r ). The field-theoretic result, Eq
~22!, is the same as that derived by more physica
motivated means, Eq.~13!.

III. THE MODEL OF TOPOLOGICAL DISORDER

The topological defects modify the diffusive motion
the particle by affecting thegi j in the Fokker-Planck equa
tion. Oncegi j is determined, Eqs.~13! and ~15! provide the
means to calculate the transport properties. It is conventio
in continuum elasticity theory to relate the spatial coor
nates to the lattice coordinates by

r ~s!5s1u~r !, ~23!

where the displacement fieldu is written in terms of ther
variables that remain well defined even in the presence
topological defects. Thes space, on the other hand, does n
remain well defined, since the effect of disclinations is to a
or remove wedges of lattice sites froms space, and the
effect of dislocations is to add or remove half lines of latti
sites froms space. For a dislocation at the origin with Bu
gers vectorb, the displacement fields are given@16# by

2pui
disloc52

~m1l!

~2m1l!

eklbl r i r k

r 2
1bi tan21

r y

r x

2
m

2m1l
e l i bl ln

r

h
, ~24!

wherem and l are the two-dimensional Lame´ coefficients,
e115e2250, ande1252e2151. Similarly, for a disclination
of strengths at the origin, the displacement fields are giv
by

2pui
disclin52

~m1l!

2~2m1l!
sri2se ikr ktan21

r y

r x

1
m

2m1l
sri ln~r /h!. ~25!

Equation~25! differs from the simplified distortion field use
in Ref. @6# by the inclusion of the strain field representing t
local lattice contraction and expansion. These are the te
in Eq. ~25! that depend on the Lame´ coefficients. Since linea
02110
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elasticity theory is used, the dislocation field is given by t
dipole limit of two superimposed disclination fields:

ui
disloc5~bl /s!e j l ] jui

disclin1const. ~26!

The derivatives of the displacement fields are required
evaluategi j from Eq. ~5!. The dislocation fields are prefer
able for this calculation, as they lead to well-defined Four
transforms:

]xûx
disloc5 i F m1l

2m1l

2kx
2ky

k4
2

ky

k2G b̂x~k!

1 i F m1l

2m1l

kx~2kx
21ky

2!

k4
1

m

2m1l

kx

k2G b̂y~k!,

]yûx
disloc5 i F m1l

2m1l

2kxky
2

k4
1

kx

k2G b̂x~k!

1 i F m1l

2m1l

ky~2kx
21ky

2!

k4
1

m

2m1l

ky

k2G b̂y~k!,

]xûy
disloc5 i F m1l

2m1l

kx~2kx
21ky

2!

k4
2

m

2m1l

kx

k2G b̂x~k!

1 i F2
m1l

2m1l

2kx
2ky

k4
2

ky

k2G b̂y~k!]̂yuy
disloc

5 i F m1l

2m1l

ky~2kx
21ky

2!

k4
2

m

2m1l

ky

k2G b̂x~k!

1 i F2
m1l

2m1l

2kxky
2

k4
1

kx

k2G b̂y~k!. ~27!

Note that thex andy derivatives of the strain fields are no
simply related by the ratiokx /ky due to the presence of th
defects. The linearity of elasticity theory has been used
accommodate a density field of defects with Burgers vec
given byb(r ).

The dislocations are assumed to be distributed rando
in the material with correlation function

^b̂i~k1!b̂ j~k2!&5d i j ~2p!2d~k11k2!x̂~k11k2!, ~28!

where

x̂~k!5gknexp~2bk2!. ~29!

Physically, we expect that this model of dislocations sho
generate identical dynamics to one in which disclinations
randomly distributed with correlation function

^ŝ~k1!ŝ~k2!&5~2p!2d~k11k2!uk11k2u2x̂~k11k2!.
~30!

This physical expectation is a mathematical consequenc
Eq. ~26!.
7-4
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With these results in hand, we are now in a position
calculate the action for the field theoretic description of
Green’s function. The terms in Eq.~21! are expressed to
linear and quadratic order inudisloc, and then an average ove
the random distribution of dislocations is taken. In fact, sin
Eq. ~14! is preferable to Eq.~15!, the theory is written in
terms of the fieldsāc ~where c5Aga), and P5^c&. The
action is

S5E
0

`

dtE dr ā@] t2~D01dD II !¹
21d~ t !#c

1E drd~r !ā~r ,0!1SI , ~31!

where

SI522D2E dt1dt2E
k1k2k3k4

~2p!2d~k11k21k31k4!

3 â̄~k1 ,t1!ĉ~k2 ,t1! â̄~k3 ,t2!ĉ~k4 ,t2!F m

2m1l
k1

2

1
m1l

2m1l

k1•k2~k1
21k2

2!12k1
2k2

2

uk11k2u2 GF m

2m1l
k3

2

1
m1l

2m1l

k3•k4~k3
21k4

2!12k3
2k4

2

uk31k4u2
G x̂~k11k2!

uk11k2u2
, ~32!

where the notation*k stands for*d2k/(2p)2. The term re-
sulting from a nonzero average of (udisloc)2 is

dD II5
gD0

2p F13l2116ml125m2

9~2m1l!2 G E
0

`

dk kn21exp~2bk2!

5
gD0

2p

G~n/2!

2bn/2 F13l2116ml125m2

9~2m1l!2 G . ~33!

Exactly the same theory is generated if the correlation fu
tion @Eq. ~30!# is used with the disclination displacemen
given by Eq.~25!.

IV. TOPOLOGICAL DISORDER REDUCES
THE DIFFUSION CONSTANT

For the model withn.0, the topological disorder reduce
the diffusion coefficient by a finite amount. The finite co
tribution of dD II is explicit in Eq. ~33!. Moreover, standard
power counting arguments@17# show that nonperturbative
renormalization effects can be expected from Eq.~32! only
for n<0. From perturbation theory on Eq.~32! for n.0, the
contribution to the diffusion coefficient is found to be

dD I52
gD0

2p

G~n/2!

2bn/2 F4m212~m1l!2

~2m1l!2 G . ~34!

The total contribution to the diffusion coefficient is, ther
fore,
02110
o
e

e

-

dD52
gD0

2p

G~n/2!

2bn/2 F29m2120ml15l2

9~2m1l!2 G . ~35!

To demonstrate the behavior of this model, we perfo
numerical simulations. The dislocation density fields are c
structed with correlation function@Eq. ~28!# for n52 using
the method of Ref.@18#. Equation~27! and an inverse fas
Fourier transform are used to calculate the displacem
fields in real space. The matrixgi j is calculated as the in
verse of the matrixgi j given by Eq.~8!, and the relations
5r2u(r ) is used.

The Fokker-Planck equation, Eq.~13!, can be considered
to result from many small hops, the net effect of which
Gaussian, diffusive motion. So that a hopping process o
lattice reproduces this differential equation, the average
mean-square displacements must be correct at each la
site. Interestingly, this differential equation can be evalua
by Monte Carlo methods on a perfect, square lattice, e
though the differential equation itself describes the motion
a particle in a distorted geometry. To first order in the tim
step, the mean displacement is given by

^r i~Dt !&5E drAg riG~r ,Dt !

5E
0

Dt

dtE drAg ri] tG~r ,t !1E drAg riG~r ,0!

5
D0Dt

Ag
] j~Aggi j !, ~36!

where Eq.~13! and integration by parts twice has been us
in the last step. Similarly, to first order, the mean-squ
displacement is given by

^r i~Dt !r j~Dt !&5E drAg ri r jG~r ,Dt !

5E
0

Dt

dtE drAg ri r j] tG~r ,t !

1E drAg ri r jG~r ,0!

52D0Dtgi j , ~37!

where Eq.~13! and integration by parts twice has again be
used in the last step.

Eight hopping rates are defined, consistent with the sp
fications of Eqs.~36! and~37!. So that the nondiagonal term
of gi j are properly reproduced, both nearest- and ne
nearest-neighbor hops are required. The rate for each
ping event is

Ti~r→r1Dr !5
D0

h2 Fg~r1Dr !

g~r ! G1/41

2
@ f ~r !1 f ~r1Dr !#.

~38!

The functionf is given by
7-5
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f 5g112e for Dr5~6h,0!,

f 5g222e for Dr5~0,6h!,

f 5~g121e!/2 for Dr5~6h,6h!,

f 5~2g121e!/2 for Dr5~6h,7h!, ~39!

with e5ug12u. The transition rates in Eq.~38! explicitly sat-
isfy detailed balance for the equilibrium distributio
lim

t→`
P(r ,t)5const3Ag(r ). These rates give the corre

average and mean-square displacements toO(h), Eqs.~36!
and ~37!, when Dt51/(( iTi). These results imply that th
Monte Carlo procedure evaluates differential Eq.~4!, and so
Eq. ~14! can be used to calculate the mean-square displ
ments. The procedure of Ref.@18# is used to perform the
simulation of this random process, where the particle
moved to one of the neighboring eight sites with probabi
DtTi , and time is incremented bydt52Dt ln(x), wherex is
a uniform random number, 0,x<1.

The results of the numerical simulations are shown in F
2. The calculations were performed for the casem5l, n
52, h51, andb54. The simulations were done on 409
34096 lattices for a total of 500000 steps and averaged o
100 000 particles. The strength of the disorder was varie
the range 0,g,1.25. For larger values ofg, the transition
rates specified by Eqs.~38! and ~39! became negative a
some of the lattice sites. Also shown is a fit to the functio
form dD/D0512ax. The fit to the simulation data ofa
50.012 8560.0051 is in excellent agreement with the the
retical result ofa50.013 26 from Eq.~35!.

V. POSSIBLE ANOMALOUS DIFFUSION

The casen50 is interesting, as perturbation theory for th
diffusion coefficient formally diverges. While this theory ha
the same upper critical dimensiondc52, as the problem of
diffusion of an ion in the electrostatic field of random
quenched charges@1#, the interaction term Eq.~32!, is quite

FIG. 2. Shown are simulation results for the reduction in
diffusion coefficient for the casen52, m5l, andb54. The error
bars are roughly60.01. The best linear fit to the simulation data
shown~solid line!. The simulation data are compared to perturb
tion theory~dashed line!, Eq. ~35!, dD/D052g/(6pb).
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different. In comparison to the analogous term for diffusi
in the random potential@e.g., termS3 of Ref. @15# with
x̂vv(k)5x̂(k)/k2], the term proportional tom is new, as are
the factors2k1

212@k1
2k2

22(k1•k2)2#/uk11k2u2 in the term
proportional tom1l. Indeed, as we will see, the prese
interaction term is more difficult to analyze than is the ana
gous one from diffusion in a random potential. Formally, t
case ofn<0 leads to large distortions of the lattice for arb
trarily small g, which implies that the assumption of linea
elasticity used to calculate the strain fields breaks down.
can, however, treat the dynamical behavior implied by E
~31! and ~32! as an interesting mathematical question.
technical detail is that we supplement the correlation fu
tion given by Eq.~29! with the conditionx̂(0)[0, so that
the displacement fields of Eq.~27! are well defined fork
50. This suppresses macroscopic size fluctuations of
sample.

Before applying renormalization group theory, the term
in the field theory must be known. The quartic interacti
term, Eq.~32!, is known. The contribution to the propagato
Eq. ~33!, while explicit, leads to a formal divergence of th
short-time diffusion coefficient. Numerical simulations sho
that the local diffusivity tensorD0gi j can be large but is
never vanishingly small. The locations of large local diff
sivity, moreover, are isolated. The apparent divergence
dD II is, thus, simply the result of particles rapidly hoppin
away from a few isolated locations. These physical cons
erations suggest that the divergence ofdD II is washed out by
spatial averaging and is not important for the long-time d
namics. We can, therefore, assume a finite local diffusiv
Numerical simulations of the dynamics, to be described
low, bear out this assumption of a finite short-time diffusi
ity. Indeed, a finite short-time diffusivity is assured for fini
lattice sizes by the elimination of thex̂(0) mode. The
anomalous dynamics, then, is observed on finite lattices
time scales that are less than the characteristic time it take
travel across the lattice.

We apply renormalization group theory to actions~31!
and ~32! to take into account the effects of nonzerog. To
one-loop order, self-energy and vertex diagrams are sum
rized in Figs. 3 and 4. The flow equations are integrated t
time small enough so that perturbation theory applies. In
regime, matching theory is used to determine the const
of integration for the flow equations. Momenta in the ran
L/b,k,L are integrated over, and the fields are resca

by â̄8(bk,b2zt)5 â̄(k,t)/ā and ĉ8(bk,b2zt)5 ĉ(k,t)/a.
The relationsa51,ā5b2 are used to achieve a fixed poin
and to keep the time derivative inS constant. The flow pa-
rameter is defined byl 5 ln b. We determine the dynamica
exponentz by requiring that the diffusion coefficient remain
unchanged. Defining g1

25gm2/(2m1l)2, g2
25gm(m

1l)/@2(2m1l)2#, and g3
25g(m1l)2/@4(2m1l)2#, the

contributions to the parameters from the one-loop diagra
of Fig. 4 are

d ln D

dl
5z222

2

p
~g1

212g3
2!,

-

7-6
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d ln g1
2

dl
52~z22!2

4

p
~g1

212g3
2!,

d ln g2
2

dl
52~z22!2

2

p
~g1

213g3
222g1g3!,

d ln g3
2

dl
52~z22!2

4

p
~g3

222g1g3!. ~40!

From the requirement that the diffusion coefficient rema
fixed, the dynamical exponent is

FIG. 3. ~a! Diagram representing the propagator. The arr
points in the direction of increasing time, and double lines repres
the bar fields.~b! Disorder vertexg.

FIG. 4. One-loop diagrams.~a! Self-energy diagrams contribut
ing to D. ~b!–~d! Vertex diagrams contributing tog; ~c! and ~d!
cancel.
02110
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z521
2

p
~g1

212g3
2!. ~41!

Using Eq.~41! in Eq. ~40!, the flow equations become

d ln g1
2

dl
50,

d ln g2
2

dl
5

2

p
~g11g3!2,

d ln g3
2

dl
5

4

p
~g11g3!2. ~42!

As expected, the flow equations show that there are only
independent parameters,g1 andg3, resulting from renormal-
ization of the two Lame´ coefficients. In other words, the
relation g2

2( l )5g1( l )g3( l ) is maintained under the renor
malization.

Unexpectedly, however, the flow equations show t
g2( l ) and g3( l ) are growing. Indeed, these one-loop flo
equations predict thatg3( l ) flows to infinity at a finite time
corresponding to l 5@p/(2g1

0)2#$ ln@(g1
01g3

0)/g3
0#2g1

0/(g1
0

1g3
0)%. The divergence of this parameter implies that high

order terms must be kept in the flow equation to derive
controlled result. It may also be the case that terms hig
order inudisloc must be kept in the expansion of action~21!.

If the renormalization of the parameters is assumed to
controlled by higher-loop corrections and is assumed to
small, the dynamical exponent can be used to determine
scaling exponent for the mean-square displacement at
times:

^r 2~ t !&;const3t12d. ~43!

The renormalized time flows as

t~ l * !5t expF2E
0

l*
z~ l !dlG5t0 , ~44!

where the flow equations are stopped atl * so that t0
'h2/(4D0). The renormalized mean-square displacem
flows as

^r 2~ t !&5e2l^r 2@ t~ l !,l #&. ~45!

Finally, at the matching

^r 2@ t~ l * !,l * #&54Dt~ l * !, ~46!

since the time is short enough so that the disorder does
significantly affect the motion of the particle. In other word
it is assumed that at short times the diffusion coefficient
mains finite, despite the formal appearance ofdD II in Eq.

nt
7-7
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~33!. Putting these matching results together with the
namical exponent, the mean-square displacement is foun
scale at long times as

^r 2~ t !&;const3t1/[11(g1
2
12g3

2)/p] . ~47!

To test whether anomalous scaling occurs in the full n
linear model, we perform numerical simulations. The tran
tion rates from Eqs.~38! and~39! cannot be used, as they a
negative even for small values ofg. We, therefore, develop a
strategy based upon the idea that diffusion locally follow
Gaussian probability distribution with mean and varian
specified by Eqs.~36! and ~37!. The time incrementDt is
chosen so that max(u^dri&u,u^dridr j&u) is on the order of unity.
This is done by choosing 1/Dt to be the maximum of the
absolute values of the two average displacements in Eq.~36!
and the two eigenvalues of the matrixD0gi j . Defining the
matrix w5(2D0Dtgi j )1/2, the random displacements of th
diffusing particle are given by the relations

Dx5
D0Dt

Ag
] j~Agg1 j !1w11z11w12z2 ,

Dy5
D0Dt

Ag
] j~Agg2 j !1w21z11w22z2 , ~48!

wherez1 andz2 are independent, Gaussian random variab
with zero mean and unit variance. This approach reprodu
the Fokker-Planck equation~4! in the limit of a small lattice
spacing and time increment. For a finite lattice spacing,
diffusion coefficient, and possibly the scaling exponentd,
contain discretization errors.

The results of numerical simulations with this scheme
shown in Fig. 5. The calculations were performed for t
casem5l, n50, h51, andb54. The simulations were

FIG. 5. Shown are simulation results for the scaling expon
for the casen50, m5l, and b54. The error bars are given
roughly by the scatter in the data. The best linear fit to the sim
tion data is shown~solid line!. Also shown ~dashed line! is the
prediction assuming that the other parameters do not flow,z52
12g/(3p).
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done on 409634096 lattices for a total of 1 000 000 step
and averaged over 100 000 particles. Also shown is a fi
the functional form of Eq.~43!. The simulation results are
approximately fit by (z22)/g51.0260.28. If it is assumed
that none of the parameters flow, the scaling exponen
given by (z22)/g52/(3p)'0.2122. By comparison, the
simulation results suggest that there is substantial pos
renormalization of the parameters, as is suggested by
~42!.

VI. DISCUSSION

A Fokker-Planck equation for diffusion on the surface o
crystal with topological defects, Eq.~13!, has been derived
by two independent methods. As expected, the usual di
sion equation in curved space is derived. An additional
sumption ofAg51 of previous, approximate treatments@6#
has also been removed in the present calculation through
use of the exact strain field given by Eq.~25!. The theory of
random dislocations is shown to be equivalent to a theory
random disclinations, where a simple factor ofk2 relates the
correlation functions of the two models of disorder, Eqs.~28!
and ~30!.

The field theory for disorder, Eqs.~31! and~32!, is explic-
itly shown to be distinct from that for diffusion of an ion i
a random electrostatic potential field. One consequence
this difference is that the renormalization group flow equ
tions are more involved to analyze, with one-loop resu
unable to render a controlled prediction.

Topological disorder slows down a diffusing particle,
shown by Eq.~35!. This reduced transport should be obse
able on the surfaces of crystals with quenched disclination
dislocation defects. While the effect is subtle, it would be
interesting one to observe experimentally. The present c
puter simulation results suggest that such observat
should be feasible.

For singular disorder,n<0 in two dimensions, the mode
of topological disorder leads to subdiffusive motion of t
particle. Of course, for such singular disorder, the assum
tion of linear elasticity breaks down. Moreover, the energy
a distribution of topological defects with net dipole mome
becomes superextensive due to large strain fields at the e
of the two-dimensional crystal@10#. Nonetheless, the sugge
tion that subdiffusion is the mathematical result of motion
the, possibly approximate, random displacement fields of
ear elasticity theory is interesting. Renormalization group
guments are suggestive of such subdiffusion, although o
loop results are unable to capture the expone
quantitatively.

Numerical simulations accurate to all orders in the d
placement fields suggest that the motion is, indeed, subd
sive. These numerical simulations suggest that there is
nificant renormalization of the disorder strength parame
in contrast to the case of diffusion in random potential fie
@1#. Interestingly, the renormalization ofz appears less sig
nificant for smaller values ofg, although this may be be
cause the crossover time for renormalization is large
smallg and longer than the observed simulation time. The
simulations suggest a power law behavior of the me

t

-
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square displacement, although localization at exception
long times cannot be ruled out, in principle.

VII. WHAT IF TORSION IS INCLUDED?

We comment here on the impact of the torsion te
within the continuum theory of the diffusion equation. Th
torsion term is evaluated as

2Tik
k [Ti5S ]r k

]sa
D S ]2

]r i]r k
2

]2

]r k]r i
Dsa52e i j

]r j

]sa
ba .

~49!

Expanding Eq.~18! to linear order inudisloc, we find that the
interaction term, previously Eq.~32!, becomes

SI5
D2

2 E dt1dt2E
k1k2k3k4

~2p!2d~k11k21k31k4!

3 â̄~k1 ,t1!ĉ~k2 ,t1! â̄~k3 ,t2!ĉ~k4 ,t2!

3F S 2g1

k1
2

uk11k2u2
14g3

k1•k2~k1
21k2

2!12k1
2k2

2

uk11k2u4 D
3~k11k2!1Agk2G•F S 2g1

k3
2

uk31k4u2

14g3

k3•k4~k3
21k4

2!12k3
2k4

2

uk31k4u4 D ~k31k4!1Agk4G
3x̂~k11k2!. ~50!

Exactly the same theory is generated if the correlation fu
tion @Eq. ~30!# is used with the disclination displacemen
given by Eq. ~25!. The inclusion of the torsion term ha
generated the additional terms proportional toAgk2 and
Agk4. Applying perturbation theory toSI , we find that a
mass term is generated,dm522D0g1Ag. This term is ex-
actly canceled by a mass term arising from the averag
terms proportional to (udisloc)2, which must be the case sinc
the master equation~1! conserves probability. No contribu
tion to the diffusivity is generated by the average of ter
proportional to (udisloc)2. From the average ofSI , we find an
additional negative contribution to the diffusivity:

dD III 52
gD0

2p

G~n/2!

2bn/2 F2~m1l!

~2m1l!G . ~51!

Within the approximation of the continuum diffusion equ
tion, then, the torsion term generates an additional contr
tion to the effective diffusivity whenn.0. Note that this
contribution is a result of correlated drift terms that ex
solely within the cores of the defects. There is no reason
expect that this contribution is universal or even well d
scribed by continuum theory.
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For the mathematically interesting case ofn<0, we fol-
low our previous numerical strategy. The random displa
ments of the diffusing particle are altered from Eq.~48! to

Dx5
D0Dt

Ag
] j~Agg1 j !1D0Dtgj 1Tj1w1 j zj ,

Dy5
D0Dt

Ag
] j~Agg2 j !1D0Dtgj 2Tj1w2 j zj . ~52!

To make use of this formula, we need an expression
]r i /]sa that occurs inTj . This is found as]r i /]sa5Aia

21

whereAa i5]sa /]r i5da i2]ua /]r i . In evaluatingTi , we
use the first line of Eq.~49!. The results of numerical simu
lations with this scheme are shown in Fig. 6. The calcu
tions were performed for the casem5l, n50, h51, and
b54. The simulations were done on 409634096 lattices for
a total of 1 000 000 steps and averaged over 100 000
ticles. Also shown is a fit to the functional form of Eq.~43!.
The simulation results are approximately fit by (z22)/g
50.4960.04.

There appears to be relatively little, if any, renormaliz
tion of z away from the bare value. A power law behavior
the long-time mean-square displacement in the presenc
torsion is observed, although localization at exceptiona
long times still cannot be ruled out.

It is clear that within the continuum assumption of th
diffusion equation, the torsion term affects the dynami
The contribution to the diffusion coefficient is explicit in Eq
~51! for the casen.0. Forn50, the results shown in Fig. 6
differ from those without torsion in Fig. 5. Note that th
results with torsion, as those without torsion, differ subst
tially from the approximate results of Refs.@6,7#, noticeably
through their dependence on the two Lame´ coefficients.

FIG. 6. Shown are simulation results for the scaling expon
for the casen50, m5l, andb54 when torsion is included. The
error bars are given roughly by the scatter in the data. The
linear fit to the simulation data is shown~solid line!. Also shown
~dashed line! is the prediction assuming that the other parameters
not flow, z5214g/(3p).
7-9
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VIII. CONCLUSION

We have given a treatment of the effect of topologic
disorder on transport properties. Within the lattice reco
struction predicted by linear elasticity theory, topological d
order is manifestly different from charged, potential-type d
order. The net effect of the defects, through local latt
expansion and contraction and global topological rearran
ment of lattice connectivity, is an overall reduction of th
. B
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transport. Interestingly, randomly placed dislocations, or r
domly placed disclinations with no net disclinicity, lead
anomalous subdiffusive behavior when the displacem
fields of linear elasticity are used.
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